On embedding cycles into faulty twisted cubes

نویسندگان

  • Ming-Chien Yang
  • Tseng-Kuei Li
  • Jimmy J. M. Tan
  • Lih-Hsing Hsu
چکیده

The twisted cube TQn is an alternative to the popular hypercube network. Recently, some interesting properties of TQn were investigated. In this paper, we study the pancycle problem on faulty twisted cubes. Let fe and fv be the numbers of faulty edges and faulty vertices in TQn, respectively. We show that, with fe + fv 6 n 2, a faulty TQn still contains a cycle of length l for every 4 6 l 6 jV(TQn)j fv and odd integer n P 3. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault-Tolerant Cycle Embedding in Restricted Hypercube-like Networks with More Faulty Nodes

The hypercube-like networks are a class of important generalization of the popular hypercube interconnection networks for parallel computing. This paper is concerned with the fault-tolerant cycle embedding ability of a subclass of hypercube-like networks, called restricted hypercube-like networks (RHLNs, for short), which include most of the well-known hypercube variants, such as the twisted cu...

متن کامل

Optimal fault-tolerant embedding of paths in twisted cubes

The twisted cube is an important variation of the hypercube. It possesses many desirable properties for interconnection networks. In this paper, we study fault-tolerant embedding of paths in twisted cubes. Let TQn(V,E) denote the n-dimensional twisted cube. We prove that a path of length l can be embedded between any two distinct nodes with dilation 1 for any faulty set F ⊂ V (TQn)∪E(TQn) with ...

متن کامل

Wirelength of 1-fault hamiltonian graphs into wheels and fans

In this paper we obtain a fundamental result to find the exact wirelength of 1-fault hamiltonian graphs into wheels and fans. Using this result we compute the exact wirelength of circulant graphs, generalized petersen graphs, augmented cubes, crossed cubes, mőbius cubes, locally twisted cubes, twisted cubes, twisted n-cubes, generalized twisted cubes, hierarchical cubic networks, alternating gr...

متن کامل

Embedding long cycles in faulty k-ary 2-cubes

The class of k-ary n-cubes represents the most commonly used interconnection topology for distributed-memory parallel systems. Given an even k P 4, let (V1,V2) be the bipartition of the k-ary 2-cube, fv1, fv2 be the numbers of faulty vertices in V1 and V2, respectively, and fe be the number of faulty edges. In this paper, we prove that there exists a cycle of length k 2max{fv1, fv2} in the k-ar...

متن کامل

Embedding Two Edge-Disjoint Hamiltonian Cycles and Two Equal Node-Disjoint Cycles into Twisted Cubes

The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the network. Edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant Hamiltonicity of an interconnection network. Two node-disjoint cycles in a network are called equal if the number of nodes in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2006